Coarse geometry of the fire retaining property and group splittings
نویسندگان
چکیده
Given a non-decreasing function $$f:\mathbb {N}\rightarrow \mathbb {N}$$ we define single player game on (infinite) connected graphs that call fire retaining. If graph G admits winning strategy for any initial configuration (initial fire) then say has the f-retaining property; in this case if f is polynomial of degree d, retaining property d. We prove having d quasi-isometry invariant class uniformly locally finite graphs. Henceforth, defines quasi-isometric finitely generated groups. group splits over quasi-isometrically embedded subgroup growth $$d-1$$ . Some connections to other work invariants groups are discussed and some questions raised.
منابع مشابه
The Quasi-morphic Property of Group
A group is called morphic if for each normal endomorphism α in end(G),there exists β such that ker(α)= Gβ and Gα= ker(β). In this paper, we consider the case that there exist normal endomorphisms β and γ such that ker(α)= Gβ and Gα = ker(γ). We call G quasi-morphic, if this happens for any normal endomorphism α in end(G). We get the following results: G is quasi-morphic if and only if, for any ...
متن کاملSplittings and the Finite Model Property
An old and conjecture of modal logics states that every splitting of the major systems K4, S4 and Grz has the finite model property. In this paper we will prove that all iterated splittings of G have fmp, whereas in the other cases we will give explicit counterexamples. We also introduce a proof technique which will give a positive answer for large classes of splitting frames. The proof works b...
متن کاملasymptotic property of order statistics and sample quntile
چکیده: فرض کنید که تابعی از اپسیلون یک مجموع نامتناهی از احتمالات موزون مربوط به مجموع های جزئی براساس یک دنباله از متغیرهای تصادفی مستقل و همتوزیع باشد، و همچنین فرض کنید توابعی مانند g و h وجود دارند که هرگاه امید ریاضی توان دوم x متناهی و امیدریاضی x صفر باشد، در این صورت می توان حد حاصلضرب این توابع را بصورت تابعی از امید ریاضی توان دوم x نوشت. حالت عکس نیز برقرار است. همچنین ما با استفاده...
15 صفحه اولGeometry, Heegaard splittings and rank of the fundamental group of hyperbolic 3–manifolds
A closed, and say orientable, Riemannian 3–manifold (M, ρ) is hyperbolic if the metric ρ has constant sectional curvature κρ = −1. Equivalently, there is a discrete and torsion free group Γ of isometries of hyperbolic 3–space H3 such that the manifolds (M, ρ) and H3/Γ are isometric. It is well-known that the fundamental group π1(M) of every closed 3–manifold which admits a hyperbolic metric is ...
متن کاملGroup Splittings and Asymptotic Topology
It is a consequence of the theorem of Stallings on groups with many ends that splittings over finite groups are preserved by quasi-isometries. In this paper we use asymptotic topology to show that group splittings are preserved by quasi-isometries in many cases. Roughly speaking we show that splittings are preserved under quasi-isometries when the vertex groups are fundamental groups of aspheri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometriae Dedicata
سال: 2023
ISSN: ['0046-5755', '1572-9168']
DOI: https://doi.org/10.1007/s10711-023-00776-0